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Abstract -The aim of th]:i work is the consideration of so-called non-Schmid ctfects within non­
associated single crystal plasticity at small strains. To this end. two additional activating mechanisms
for dislocation flow on a slip system arc modelled. For convenience the corresponding algorithmic
setting is discussed in the sequel. Next. the influence of non-Schmid elfects and non-associativity on
the response behaviour of a single crystal within a simple shear deformation is examined.
Subsequently, the theoretical framework for the localization analysis within multisurface plasticity
is presented. Finally, the impact of non-Schmid efrects on the orientation of a possible localization
band and the corresponding critical hardening modulus are investigated for a simple model problem.
( 1998 Elsevier Science Ltd. All rights reserved.

i INTRODUCTION AND MOTIVATION

This contribution is concerned with dilTerent aspects ofa single crystal plasticity formulation
which takes into account additional non-Schmid effects at small strains.

Classically, the mathematical modelling of single crystal plasticity is associated with
the Schmid yield condition which compares the critical shear stress on a crystallographic
slip plane with the tangential projection of the global stress tensor. Thereby, the tangential
stress projection, generally referred to as resolved Schmid stress. can be understood as the
driving force activating the mechanism of dislocation flow. Motivated by the discrepancy
between the Schmid based predictions and experimental results, a generalization of the
Schmid law has been proposed, see e.g. the early contributions by Leroy et al. (1970) and
Asaro and Rice (1977). Thereby, other stress projections than the Schmid strcss are taken
into account for the mobilization of dislocation fiow.

In the present contribution we will focus on two essential non-Schmid stresses acting
as additional driving forces for dislocation flow. On the one hand, we consider thc projection
onto the slip plane normaL i.e. the normal stress on the slip plane, and on the other hand
we take the projection onto the co-slip direction, i.e. the co-shear stress on the slip plane,
into account. In view of the crystallographic geometry, both non-Schmid stresses can be
motivated as additional driving forces activating dislocation flow by either obstacle jumping
or obstacle surrounding.

The underlying geometric interpretation of non-Schmid efTects is based on several
experimental observations for different crystalline materials. Christian (1983) gave an
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exposition on "some surprising features of plastic deformation of bcc metal and alloys"
which include besides other anomalous phenomena in particular the failure of the classical
Schmid law. This anomal behaviour has as well been observed for intermetallic compounds
of the so-called L 12 structure based on an fcc lattice. Paidar et al. (1984) proposed a theory
that explains the anomalous yield behaviour in L 12 structures which appear to strongly
disobey the Schmid law. Experimental investigations on Ni3Ga and C03Ti have been
performed by Ezz et al. (1992) and Takasugi et al. (1987) which again suggest that, due to
the complex core structure of dislocations in the crystaL other stress components than the
Schmid stress affect the mobility of dislocations on a slip plane.

These additional effects, sometimes resulting in cross-slip, where early modelled by
Leroy et at. (1970) by reducing the yield stress. This formulation does not alfect the driving
force. which has been modelled to be identical to the one predicted by the Schmid law.
Although this seems to be a different motivation. the results obtained by Leroy et al. (1970)
coincide with a formulation where non-Schmid stresses are considered as being responsible
for the activation of the slip mechanism. A phenomenological framework within a con­
tinuum description was proposed by Asaro and Rice (1977) and Asaro (1983) who also
analysed the effects on the localization analysis if non-Schmid contributions are considered.
An overall account on single crystal plasticity including non-Schmid effects is given by Qin
and Bassani (1992a. b) and Bassani (1994) with particular emphasis on aspects related to
the underlying non-associated plasticity formulation. Non-normality. which is for example
introduced through the additional consideration of normal stress components in the yield
condition. leads to destabilizing effects, thus even for positive hardening moduli the tend­
ency towards the formation of localization bands can be predicted. which essentially
coincides \vith experimental results. Moreover. the orientation of the localization band and
the active slip planes do not agree, but obey a slight mismatch. see Chang and Asaro (1981)
and Spitzig (1981).

The paper is organized as follows: first, in order to embed the basic equations of single
crystal plasticity at small strains into the framework of phenomenological continuum
mechanics, we review the essential relations of multisurface elasto-plasticity. Thereby, for
the phenomenological modelling within a continuum mechanics setting, it is widely accepted
that models of single crystal plasticity may be considered as particular examples of mul­
tisurface plasticity. see for example the early contributions by Koiter (19601 and Mandel
( 1972).

Next we give a brief description of a generalized single crystal plasticity model taking
into account additional non-Schmid effects. Thereby, the well-accepted formulation based
on the Schmid law is enriched by two additional stress components, the normal stress and
the co-shear stress acting on the slip plane. The traditional framework f()r single crystal
plasticity is set forth e.g. in Hill (1966), Hill and Havner (1982). Asaro (1983) among
others. As a simplifica tion the constitutive equations for non-Schmid crystal plasticity are
specialized for a prototype model problem assuming isotropic elastic behaviour and plas­
ticity based on the isotropic flow resistance.

As far as the algorithmic implementation is concerned, recent computational treat­
ments of Schmid based single crystal plasticity have been advocated e.g. by Cuitiiio and
Ortiz (1992). Borja and Wren (1993), Steinmann and Stein (1996), Miehe (1996) and Anand
and Kothari (1996). After reviewing the algorithmic treatment of the non-Schmid version
of single crystal plasticity and discussing the main differences to single surface plasticity,
we examine the influence of the additional non-Schmid effects in a model example in form
of a simple shear test.

In the second part of this work. we are concerned with the localization analysis of the
proposed single crystal model. To this end, we first derive the localization condition for
two different scenarios which are commonly denoted as continuous and discontinuous
localization. Thereby, the possibility for several active slip systems is taken into account and
results in explicit formulations l~)r the critical hardening modulus. Finally, we investigate the
critical hardening modulus and the corresponding direction ofa possible localization band
for a simple model problem whereby we focus in particular on the effects of the non­
associated How rule which is due to the consideration of the additional non-Schmid
contributions.
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2.1. Multisurface plasticity Famelvork
To set the stage of the subsequent developments, we first review the essential relations

of geometrically linear multi surface elasto-plasticity.
Classically, the underlying kinematical assumption is the additive decomposition of

the total strain into an elastic and a plastic part

(I)

Then, the elastic part of the constitutive law is formulated via the fourth order elastic
tangent operator (j'eI, not necessarily isotropic, of the geometrically linear theory and,
moreover, n,T! yield stresses Y! are introduced in terms of 11,,/ scalar internal variables K J

which are responsible for isotropic hardening

(2)

The structure of the dissipation inequality suggests n"f yield conditions <D, in terms of the
stress measure ff and the yield stress Y I

<D/(ff, Y I ) I ... II,,-{. (3)

Here, the VI denote the normals to the yield conditions in the stress space. Moreover, for
the general non-associated case a Koiter type flow rule in terms of the flow directions PI

together with the evolution equations for the internal variables K I are given by

n,/.,

8" = I ",'IPI and [.:1 = 1'1 VI = 1 ... 11,,(.
Ie I

Accordingly, the evolution of the yield stresses YI renders the hardening moduli flu

,
YI = I flU;'J with flu

/' I

(4)

(5)

Plastic-loading and elastic-unloading conditions together with the requirement of con­
sistency are expressed for each yield condition as

(6)

The special case of associated plasticity is obtained upon substituting PI by VI whereby the
principle of maximum dissipation will be satisfied. For associated plasticity the loading­
unloading conditions follow from the optimality conditions that are implied by the principle
of maximum dissipation. In terms ofan optimization problem with n'Ttinequality constraints
they represent the classical Kuhn-Tucker complementary conditions. For non-associated
plasticity they are rather postulated by physical reasoning. Since generally not all n,rt yield
conditions are simultaneously active, we define in addition the set of active constraints sl.
whereby we assume for simplicity that all active constraints are independent

.c;/ = (IE: I ... I1'TI: lePI = 0 and '/1> 0) with 11",! = dim ,c/. (7)

Evaluating the consistency conditions for the <D I in eqn (6.4) for the case of plastic loading
yields after some algebraic manipulations the plastic multipliers 'if in two alternative
expressions.



4440 P. Steinmann 1'1 al.

(8)

Thereby, the latter expression is valid as long as the matrix of hardening moduli HIJ is not
singular. In the above relations we introduced the pseudo surface normals VI and VI as
convenient abbreviations

VI = I: hUv,l
.Ii:::;'

and VIE/Y . (9)

with [h lJ
] = [hu] 1 and [H II

] = [Hu ] I

Finally, the coefficients hll are defined in terms of the hardening moduli Hl.l and the
coefficients I]II

(lO)

As a result we obtain the elasto-plastic tangent operator and its inverse in the remarkably
simple format of a sum of rank one updates

/J,p = /J e-- I: /Jel: 1'1 ® VI: /J,; and
Ie 'I

/Je/, I = /J'e! 1 + L 1'1 ® r,/.
lr,,';

(II)

Please observe that the tangent operator is non-symmetric for the general non-associated
case.

2.2. Application to single crystal plasticity
At the micro level the geometry of a single crystal lattice is essentially characterized by

the planes with maximum density of atoms, the so-called slip planes with normal unit vector
mf, and the directions with minimum distance between the atoms, typically in the order of
I A. the so-called slip directions sf, see Fig. I. For ductile single crystals these vectors
possess the property Sf.1 ml for each crystallographic slip system I. Therefore, it appears
meaningful to complement these vectors to an orthogonal triad by the so-called co-slip
direction CI = SI x m/_Then we introduce the following dyadics for later use

( 12)

These dyadics are used to project the stress tensor (f onto certain stress components acting
on the slip plane I. We will denote these components by,;"" ,;/11 and ,~"'. they are defined
as

In particular, the so-called Schmid tensor SI ® m l projects the stress tensor (f onto the shear

Fig. I. Characteristic directions s. c and m.
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Fig. 2. Mechanism of plastic slip.
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stress rY", frequently referred to as the resolved Schmid stress, which acts in the direction
51 of the slip plane I. Accordingly, the non-Schmid tensors ml ® m l and CI ® ml project (1

into the normal stress rTO' and the co-shear stress r;''', commonly referred to as non-Schmid
stresses, acting on the slip plane I.

For single crystals irreversible deformations are accumulated by the flow of single
dislocations through the crystal lattice, for a sketch of the mechanism of dislocation
flow please refer to Fig. 2. Within a continuum theory the flow of single dislocations is
homogenized into the notion of plastic slip.

In general, all components r}"', T7"" and r~"', weighted by corresponding influence values
'1"", '1"'111, '1e

", might be responsible for the activation of plastic slip in slip system 1, thus, on
each slip system I plastic slip occurs as soon as a critical reference value, the flO\v resistance
YI , is exceeded

(14)

The arrest and pile up of single dislocations together with other point effects like vacancies
and interstitial atoms render an obstacle for the dislocation flow and thus, leads to an
increased flow resistance Y,. These hardening effects are phenomenologically measured by
the internal variables K.I'

It is interesting to note that the yield condition, a linear and homogeneous function of
degree one in the stress, might be simplified into the notation of the previous section as

D</J,
(PI = (1: = (1: VI with "I = ex''''[SI (2) m/l',m + '1"""[ml (2) m/] + ex''''[CI (2) mil""'. (15)D(1

The classical Schmid based formulation is obtained by setting ri'" = I and ex""" =exC
'" = 0

giving Y I the interpretation of the critical resolved shear stress on slip system I. The non­
Schmid contributions due to 'Yo"'''' i= 0 and ex C

", i= 0, i.e. due to the normal stress and the co­
shear stress on the slip plane, take additional activating mechanisms (obstacle jumping and
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Fig. 3. Activating mechanisms for plastic slip.

obstacle surrounding) for dislocation flow into account, as a motivation consider Fig. 3.
Thereby, in order to account for the additional activating mechanisms irrespectively of the
sign of the normal stress and the co-shear stress we assume for the influence values ex"m" (X""

sign(cl"m) = sign(r]"") and sign(ex'''i) = sign(r~"'). (16)

From the geometry of a crystal lattice the evolution law for the plastic strains or rather the
flow rule turns out to be dictated by the flow of dislocations along fixed slip systems in the
so-called isoclinic configuration even if non-Schmid effects are present

(. = '\' ., [s 'x' m ]SI'IH"" L if ., \CJ , •
1£:.',/

( 17)

Here the plastic multipliers )'1 take the interpretation as the rates of plastic slip on the slip
systems I. Please note that plastic flow is assumed to preserve the plastic volume since we
have simple shear with s/-l fi, for each crystallographic slip system I thus, rendering
sp :I = O. The flow rule might be simplified into the notation of the previous section as

Ep = I ,'ilJ , with PI = [Sl ® mJ']1II 0/= VI'
le_'./

(18)

Typically, for fcc crystals 24 (counting slip in positive and negative slip direction separately)
slip systems might be activated in a general deformation. These are given by combinations
of the four mlE {Ill} planes and the three SIE [110] directions of a crystal unit cell, see
Fig. 4.

As a summary of this section. single crystal plasticity might be considered as the
paradigm for multisurface plasticity with anisotropic yield conditions. Thereby. on the one
hand, Schmid based single crystal plasticity in the format advocated e.g. by Asaro (1983)
falls into the category of associated multisurface plasticity, whereas. on the other hand,
non-Schmid based single crystal plasticity in the format advocated e.g. by Bassani (1994)
falls into the category of non-associated multisurface plasticity.

2.3. Prototype model prohlem
For the sake of simplicity we restrict ourselves to the geometrically linear case and

assume the elastic response to be governed by the isotropic Hooke model valid for small
strains

{I,! = 2Ci.7dei +KI ® I with .7dcl = .~ -~ I ® I.
3

(19)

Here G and K are the shear and bulk modulus, respectively, .~ and I denote the fourth and
second order unit tensors. The elastic stress response decouples into the deviatoric stress S

and the hydrostatic pressure p as
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Fig. 4 Slip systems or an FCC crystal.

O'=s+pl withs=2G.l del
:Ec and p=KI:Ec . (20)

Then the projected stress components T1", rj"", rT' are computed almost exclusively in terms
of the deviatoric stress s

Apparently, only rj"ll renders a dependence of the hydrostatic pressure p which is usually
neglected in the plasticity formulation for ductile single crystals. The projection of the flow
direction II, and the yield surface normals VJ by the elastic tangent operator simplifies into

8,/:11, = 2Gil, and vJ :8,i 2Gv'i"+rx"''''KI withv'i'f=vJ-.~x"""I. (22)

A further simplification is obtained by assuming an isotropic flow resistance Y, = Y for all
slip systems I and lateral Taylor hardening HIJ = H in terms of a single internal variable K

with evolution law

f.: = L 1'1 and
k:_ci

f = II1\- where Y = Y(K) and
oY

H= _ .
OK

(23)

Typically, for AI- eu alloys the saturation type critical flow resistance Yand its derivative.
the hardening modulus H, might be assumed as

Y(K) . (HOK 'J'Yo + [Y , - }o] tanh,-=:,}·;,
Y, 0

and H(K) H o cosh- 2 ( 1.10', ....)
Y I •. Yo

(24)

with Yo, Y, and Ho the initial flow resistance, the saturation flow resistance and the initial
hardening rate, respectively.

Based on the above assumptions the non-symmetric tangent operator is explicitly
expanded as
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Table I. Prototype non-Schmid single crystal plasticity

• Elastic constit utive law

s = 2G.p',i: [E'-8,,) and" = KI: [8-8,,]

• Projected stresses

• Yield conditIOns

• Flow resistance

n,,) = ii, + [Y, - Y,,] tanh (', ..)
.. J, Yo,

• Flow rule and evolution law for the hardening variable

and

• Elasto-plastic tangent operator

(;'I'={;'! I hlJ [2G,uIJ@[2Gv:;"!+ct"""KlJ withhlJ =2Gv/:,uJ+H. (25)
I.JE,j

For convenience, the resulting single crystal model is summarized in Table I.

j ALGORITHMIC TREATMENT

Following standard procedure in computational elasto-plasticity, the now rule and the
evolution law for the hardening variable are integrated over a finite time step f..1 = ,,+1 / -"1

by the Euler backward method to obtain

f..f{ = I f..i'/ with f..}'1 = f..li'l·
1,,'/

(26)

Assuming first that the response during f..1 is purely reversible, i.e. the active set of slip
systems is empty sd = 0, the elastic predictor state is given by

The violation of any of the yield conditions '<D/ > () by the elastic predictor state determines
if a plastic corrector step must be performed.

Thereby, the determination of the active slip systems or rather the set of active
constraints cd, poses severe difficulties. On the one hand, due to the incompressibility
constraint for the plastic now, a maximum number of five independent slip systems is
possible within 3d multisurface elasto-plasticity. On the other hand, for the case of fcc
single crystals, 24 slip systems might be activated. thus, the determination of the active slip
systems in non-unique. For the selection of the active set of slip systems a number of
proposals has been made recently, see e.g. Simo cl al. (1988) for the case of linearly
independent constraints and Cuitifio and Ortiz (1992), BOlja and Wren (1993), Anand and
Kothari (1996) for the case of linearly dependent constraints.

In the sequel, we apply the algorithm proposed by Cuitino and Ortiz (1992) which
basically adds the most loaded system to the set of active constraints in an iterative fashion.
Numerical experience proves that this algorithm renders a converging seq uence of Nev,:ton
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iterations. When the active set of slip systems is determined, the incremental slip rates 11/'1
follow from the solution of the implicit algorithmic consistency condition

n' I'" - <' '\ A." '1'VI - (PI- f..., Ll,.l 1.1
.hl

y (c /{ + I, 11~'J) == O.
JF,C)

(28)

Thereby, a typical iterative Newton update IS given in combination with a Bertsekas
projection by

(29)

The coefficients lJu are expressed in terms of the slip and co-slip directions SI and CI together
with the slip plane normal mi' Since these are fixed in the isoclinic configuration, they might
be computed in advance from the scalar products

IJ = G[r:t.""[S 'S J+c:t.''''[c 'S J+'X"''''[m 'S ]][m 'm JIJ I J 1./ I J I ./

+G[x'n/[s 'm J+'x""[c 'm J+'X"""[m 'm J][m 'S J.I J ,./ l.l I J

(30)

(31 )

In summary, the update of the stress and the internal variable is given in the following form

'1-·1 _' l(' \~ A,.
(1-- (1-·_Jf...,I':>OJl.I

IF ,j

and /1""1", 'Id I 11/,.
IE'I

(32)

Finally. the algorithmic elasto-plastic tangent operator If::,,, necessary to guarantee optimal
quadratic convergence within the global Newton--Raphson equilibrium iteration, is
obtained by linearizing the stress update algorithm ,1+ 1(1("8). In the sequel we will employ
this tangent operator exclusively within the localization analysis. Remarkably, for the
present case of single crystal plasticity the algorithmic tangent operator is identical to the
continuum elasto-plastic tangent operator, thereby this coincidence is due to the linearity
of the yield conditions in the stresses

(33)

Recall that in contrast to Schmid based single crystal plasticity, non-Schmid based single
crystal plasticity obeys a non-associated flow rule. As a consequence, the corresponding
tangent operator and thus the overall linearized system of equations resulting from a finite
element discretization are non-symmetric. Within a computational setting non-symmetric
systems of equations lead to a slightly increased amount of work spent for the solver,

The resulting algorithmic counterpart of the present single crystal model is summarized
for convenience in Table 2.

4. EXAMPLE: PLANAR SIMPLE SHEAR DEFORMATION

In this example of phenomenological influence of non-Schmid effects on the response
behaviour of a single crystal undergoing a homogeneous simple shear deformation under
plane strain conditions is examined numerically.

The material parameters are chosen to model an AI-eu alloy with Lame constants
L = 35.105 N/mm:' and G 23A27 N/mm2

• The initial flow resistance, the saturation flow
resistance and the initial hardening rate are set to Yo = 60.5 N/mm2

, Y, = 109.5 N/mm2

and Ho = 541.5 N/mm2
, respectively. For the kinematics of the crystal we restrict ourselves

for simplicity to the Asaro planar double slip model, thus the non-Schmid efl'ects exclusively
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Table 2. Integration algorithm for Schmid and non-Schmid single crystal plasticity

l. Increment initialization '1/1 = 2GI',: Ph .,/ 0 and predictor state

1 Iteration initialisation

:1. Newton step with iteration matrix h/l+ fI('" "~,I. projection and filter

'1" -- m'lx J('11"' + 2.: h/l,··' "I> \) 0'. c/,/;/(l1y, = 0)",/- ( !, I f J~,_j - .J I' - ,I

4. Iteration update

"'I,p, ·(P,-2.: I1";'J'7/1 '" 1(= '".j. 2.: 11";" "'<1J,o~" "Pr-Y(''''I()
h, -j' le-/

5. Check residuum for active slip systems

6. Check residuum for all slip systems

If L: ('" '11, >: ;" Tol' then.''; = .d UI(max ,.+ '<1J,) and Goto 2
! ,

7. Increment update

, IT = 'IT -- 2G 2.: 11·;,P,.
,'0::.,-1

8. Algorithmic elasto-plastic tangent operator

'I( = '1\+ 2.: I1YI
f'e'''::/

/:'(' /:,.! 2.: f1U[2Gp,]@[2Gv:J"+/""KI]
I)"

stem from the normal stress Tj"U and the influence value ':/."1111
• The two-slip planes are

symmetrically oriented with ± 30 about the global e2 direction.
The analysis is performed displacement driven for a single integration point of a

standard Q I element. Thereby. the shear strain is applied in 50 prescribed deformation
steps with 111:,c = 0.1°1" until a final value of I:,c 5.0%, is obtained.

The effects of the non-Schmid contribution are examined by increasing the influence
value ':/."'1" from 'l.""n = 0%. representing the special case of the underlying Schmid behaviour.
to ':/.""" = 20%. representing strong additional non-Schmid activating mechanisms for plastic
slip. Thereby. we focus primarily on the resulting shear stress component (T,c with respect
to the fixed Cartesian laboratory frame. Moreover. the evolution of the flow resistance Y
and the internal variable K are observed.

Figure 5 reflects the evolution of the shear stress component (T,c for varying influence
values 'l."U". When the elastic regime is left the resulting shear stress decreases with increasing
values of ':/."11" in the plastic regime. For the interpretation of these results we recall that the
flow resistance Y coincides with the projected stress (Pion the active slip systems l. Thereby.
it turns out that the order of magnitude for the flow resistance Y displayed over the shear
strain 1: , : in Fig. 7 is almost independent of the chosen 'l."''''. The projected stress (PI is in
turn computed by projecting the stress tensor (J by the projection tensor 1' ... whereby the
influence of T'l"11 is emphasized with increasing ':/."11". Therefore. the load carrying capacity of
the material in Fig. 5 decreases with increasing non-Schmid contributions. For the particular
model of non-Schmid single crystal plasticity under consideration this behaviour seems to
characterize a general lrend.

For the sake of comparison Fig. 6 displays the difference of the associated and the
non-associated version of the flow rule for ':/."11" = 20% and contrasts the results to the
standard Schmid rule with IX'"'" = 0'>;;). On the one hand, the load carrying capacity obviously
decreases as soon as any non-Schmid contributions are taken into account. On the other
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Fig. 5. Shear stresses for different 'l""".
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Fig. 6. Shear stresses f(Jr associated and nonassociated flow rule.

hand, there is only a slight difference in the response for the associated and the non­
associated case. Thereby, the stress-strain curve of the non-associated flow rule takes
slightly higher values as compared to the corresponding curve of the associated flow rule.
Nevertheless. as soon as the flow resistance is saturated this distinction vanishes.

The influence of am", on the evolution of the internal variable K and the resulting flow
resistance Y is highlighted in Figs 7 and 8. The resulting curves indicate a moderate increase
of the obstacle density with increasing :in

"" therefore the saturated flow resistance is achieved
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somewhat earlier if non-Schmid effects are taken into account. Nevertheless, the magnitude
of the different K and Y is in the same order.

5. MULTISURFACE LOCALIZATION ANALYSIS

Classical localization analysis considers weak discontinuities, i.e. discontinuities of the
strain rate field across a material surface, see e.g. Rice (1976). Analogous arguments in the
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Fig. 9. Discontinuity surface.

context of planar acceleration waves in solids are found in the contributions by Hill (1962)
and Mandel (1962). Recently. for single surface plasticity. the alternative kinematical
concept of strong discontinuities for the description of localization has been pursued by
Larsson ct al. (1993) and Simo ct al. (1993) for the small strain approximation and by
Armero and Garikipati (1996) and Steinmann et al. (1997) for the geometrically nonlinear
case. Localization analysis for multi surface plasticity has been considered in Steinmann
(1996) and Sawischlewski et al. (1996).

Thereby. the condition for a regularized strong discontinuity in the displacement field
u across a discontinuity surface r characterized by the surface normal n as depicted in Fig.
9 with jump amplitude [u~ = m and regularization width () is given by the localization
condition

I
[[]6',I'~: il]' n+ ;jq,p' m = 0 with q,1' = n '6',1" n. (34)

Here, we introduced the localization tensor q,l' as the contraction of the tangent operator
6',1' within the localized band with the surface unit normal n. Thereby, the contractions are
performed with respect to the second and fourth index of the fourth order tensor 6"1"
Taking into account the simple structure of 6',,, in egn (II) results in an intriguing concise
representation of the corresponding q,l' as a sum of rank one updates of the elastic local­
ization tensor

, '!VI-Iq,." = q,) - L. e:, \Y e,
k'/

with e;, = [6'cI: PI] . nand e; = [v,: 8,)] 'n. (35)

Thereby. the e;, and e; may be interpreted as "traction" vectors acting on the discontinuity
surface and involve the flow directions P, and the pseudo yield surface normals i'l'

Moreover, we defined the jump in the tangent stiflness ~6'el'] in egn (34) since 6',,1' might
take. in general. different values inside and outside a localized band.

Next. the localization condition in egn (34) might be considered for different loading
scenarios inside and outside the localization bane!. Thereby. under the assumption that no
discontinuity has developed so far we concentrate on the investigation of the condition for
the onset of localization. On the one hand. we restrict ourselves to the basic case of
continuous localization characterized by further plastic loading of all active constraints on
both sides of the discontinuity and on the other hand to the limiting case of discontinuous
localization where the domain outside the band completely unloads elastically whereas the
domain inside the band continues to be loaded plastically for all active constraints.

5.1. Continuous localization
For the onset of continuous localization we consider the ease of plastic loading on

both sides of the discontinuity. thus the jump in the elasto-plastic tangent operator 116'



4450 P. Steinmann et aI.

vanishes identically. Upon introducing this result into eqn (34), the condition for the onset
of continuous localization is then formulated as

q"p'm = 0 ----. detq,p = O. (36)

Observe that the regularization width (5 does not come into play for this scenario and thus,
remains undetermined.

Within the context of quasi-static boundary value problems, the first occurrence of the
singularity of the localization tensor is referred to as the loss of ellipticity, which is syn­
onymous with the appearance of real characteristics associated with governing equations
of the hyperbolic type. Likewise, within the context of dynamic initial boundary value
problems, the singularity of the localization tensor is connected with the loss of hyper­
bolicity.

Following the developments in Steinmann (1996) and Sawischlewski et al. (1996) the
determinant of q,p for a general number of independent active constraints is given in terms
of the so-called (J)1./ matrix

detq", ,= detq"detw with WI./ = (51./-e;·q,.,1 'e: VI,JEd. (37)

Therefore. since the coefficients hl./ '11.1 + HJj are linearly contained in the e~ via the pseudo
surface normals v= l.J({ hl./vh the critical hardening moduli H~~, rendering det q"p = 0,
might easily be extracted from det w O. Clearly, for multiple active constraints the explicit
result depends on the particular structure of the hardening moduli HI./ under consideration.
Typically. for isotropic hardening of all yield mechanisms with HI./ = H we obtain

fr' II\II _ . <. ' '~,f K. 1. L I..... llJIf -mdxl I ie, qd el'--~K·{jel.P.LJ ).
inl 1 \ i.,h':;

(38)

Here we introduced the notation e; = [v t : 18,.,] •nand {(.)KL]lJ denote the coefficients with
indices IJ of the inverse of a matrix with coefficients (.) AI.'

Accordingly, for the special case of self-hardening of all yield mechanisms with
Hu HtJ" the critical hardening modulus follows from an eigenvalue problem as

H" == max ('max i'K(e; . q,,! I • e: - VI: 11 c': p..t! ")' .
Inl I A ,

(39)

Finally, for only one active constraint these results boil down to the well-known rep­
resentation

H" = max(e,.· qel I • e,,) '- v: 18,,/: p.
n 0= I .

(40)

Interestingly, in this case w coincides with the smallest eigenvalue of the general right
eigenvalue problem q,I" Z wq,.;· Z.

5.2. Discontinuous localization
Another possible loading situation within multisurface elasto-plasticity is characterized

by plastic loading of all active constraints within and complete elastic unloading outside
the anticipated localized band. while it is still assumed that no band has developed so far.
The tangent operator within the band will then get an additional contribution due to the
plastic loading condition such that we obtain the condition for onset of discontinuous
localization as
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(41)

Here, )'f denote the negative "plastic multipliers", which reflect the elastic unloading
condition outside the band. Accordingly, the 1,t denote the positive plastic multipliers and
reflect the plastic loading condition inside the band

(42)

Observe that the jump amplitude () is contained in the condition for discontinuous local­
ization and, moreover, is indirectly driven by the continuous part of the strain rate e,
Thereby, it turns out that the solution for the jump vector m is given by

I
m=

()
(43)

Then, by checking under which condition the above localization mode complies with the
assumed loading scenario we obtain the following relation between the negative 1'1 and the
positive y) in terms of the WI./ matrix introduced in the previous section

)'f = I WI/i'.! < O.
./,::"':

(44)

Finally, the quadratic form ofwl./ computed with vectors containing the }'.; renders a strictly
negative value

\~ -,""
L... I f Ii
h'l

(45)

Thus. as a necessary condition for discontinuous localization, at least one eigenvalue of the
symmetrized WI./ matrix w?Yll has to be negative. Moreover, as an additional requirement
for the necessary condition for discontinuous localization to hold, all entries }'f' in the
corresponding eigenvector have to be strictly positive and have to be mapped into strictly
negative values by the original matrix WI./_ A well-known result in algebra. sometimes
referred to as the Bromwich theorem. states that the eigenspectrum of a symmetrized matrix
bounds the corresponding real eigenspectrum of the non symmetric matrix. Since WI./ is
generally nonsymmetric, we therefore conclude that discontinuous localization may gen­
erally precede continuous localization which is characterized by a zero eigenvalue of the
original WI./ matrix

;_min(())~?jm) :s; ~H()~lnill((OJJ)). (46)

6. EXAMPLE PLANAR LOCALIZATION ANAU'SIS

In this example the phenomenological influence of non-Schmid effects on the local­
ization behaviour of a single crystal undergoing arbitrary homogeneous deformations under
plane strain conditions which activate only a single slip system is examined. Since in the
present case the elasto-plastic tangent operator does not explicitly depend on the actual
stress state but is only implicitly depended on the stress state via the selection of the active
slip systems, the following analysis is valid for all homogeneous deformations activating
the same active set of slip systems.
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Thereby, the material parameters are chosen to model an Al-eu alloy and are set to
the values of the previous example. For the kinematics of the crystal we restrict ourselves
due to the above reasoning to a planar single slip model. thus the non-Schmid effects again
exclusively stem from the normal stress r7 1111 and the influence value '1."

11
". The single active

slip plane encloses an angle of 30 with the global e2 direction.
The localization analysis is performed in terms of the critical hardening modulus H",

thereby we focus again on the impact of varying influence values ti"'" representing the non­
Schmid contribution. To this end, the influence value XliIII' is increased from '1."

1111 = 0%.
representing the special case of the underlying Schmid behaviour, to Ix",m = 20%. rep­
resenting strong additional non-Schmid activating mechanisms for plastic slip. For a planar
application the critical orientation n" of a possible localization band is given in terms of
the in-plane angle if as nei = [cos :f", sin ir'].

Figures 10-14 display the hardening modulus H = C,.• qet I • ell - v: 18,(: II over the vari­
ation of ,'} between 0 and 360. The maxima of these curves denote the critical values H'
with the corresponding :f" indicating the in-plane normal to a possible localization band.

Figure I0 reflects the typical results for associated single crystal plasticity based on the
Schmid law. The maximum hardening modulus H' = 0 is zero and corresponds to the four
critical directions :r'=c 60, 150, 240 and ,'f" == 330 . Thereby. the ,rf" 150 . 330 solutions
correspond to a localization band parallel to the direction of slip s. whereas the ,'},r = 60 ,
240 solutions depict a localization band parallel to the slip plane normal m. For an
interpretation recall that the direction II of the plastic strain rate i; is given by the sym­
metrized dyadic product of sand m, thus. a secondary slip system with slip direction m and
slip plane normal s is kinematically not distinguishable from the original one.

Figures 11-·--14 characterize an increasing influence of non-Schmid effects. Interestingly,
in contrast to the four maxima 11" in the previous Schmid case. the non-Schmid con­
tributions emphasize roughly the slip direction m for the secondary slip system, resulting
in only t\\/O maxima H" with corresponding critical directions ,'}" == 60 + L1:f and
:r' = 240 +L1:} as depicted in the diagrams. The deviation L1a, indicating a mismatch
between the secondary slip direction and the possible localization band. increases with
increasing X""" and is approximately 6 for thc cxtreme case ·xnJnJ = 0.20 %

.
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Another important difference to the results of Schmid based single crystal plasticity
stems from the non-normality of the flow rule. In contrast to Fig. 10, the critical hardening
modulus now takes increasingly positive values in Figs 11~14. This is a direct consequence
of the increasing non-symmetry of the tangent operator with increasing X

llllll
•
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Finally, throughout Figs ] 114 we observe a zero hardening modulus H for
:-r = 150 +L19 and [Y' = 330 +L1[), thus, a secondary localization band is possible as soon
as the yield resistance Y has saturated with H = O.
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Clearly, by activating the alternative slip system with the corresponding slip plane
enclosing an angle of -30 with the global e2 direction, the resulting curves for Hare
shifted by an angle of 60 with respect to the previous results.

7. SUMMARY

Motivated by the discrepancy between classical Schmid based single crystal for­
mulations and documented experimental results, the objective of the present work has been
to investigate different aspects of a single crystal plasticity formulation which takes into
account additional non-Schmid effects. To this end, two non-Schmid stresses acting as
additional driving forces for dislocation flow have been motivated by the crystallographic
geometry. These two non-Schmid stresses, the projection onto the slip plane normaL i.e.
the normal stress on the slip plane, and the projection onto the co-slip direction, i.e. the co­
shear stress on the slip plane, activa te dislocation flow by either obstacle jumping or obstacle
surrounding. For the sake of transparency, we restricted ourselves to the geometrically
linear case.

The considered single crystal plasticity formulation was recast within the continuum
mechanics framework of multisurface elasto-plasticity. As a side aspect we gave the elasto­
plastic tangent operator and its inverse in a concise format of a sum of rank one updates.
Based on a prototype non-Schmid single crystal model we discussed the straightforward
extension of known algorithmic settings to the present non-associated case.

The influence of non-Schmid effects and non-associativity on the response behaviour
of a single crystal was then investigated for the example of a simple shear deformation.
Thereby, it turned out that increasing non-Schmid effects result in a decrease of the overall
load carrying capacity of the sample. Moreover, the distinction between a non-associated
and an associated formulation is smaller than expected. Since, from a computational point
of view, an associated formulation would be preferable, this aspect deserves more attention
in the future.

Subsequently. the theoretical framework for the localization analysis within mul­
tisurface plasticity was proposed. To this end, the localization conditions for continuous
and discontinuous localization were derived. In particular, the possibility for several active
slip systems has been taken into account and explicit results for the critical hardening
modulus were given which retain the formal structure of the results obtained in the single­
surface case.

Finally, the impact of non-Schmid effects on the orientation of a possible localization
band and the corresponding critical hardening modulus were analysed. Thereby, we focused
on the effects of the non-associated flO\v rule which is due to the consideration of the
additional non-Schmid contributions. As a result. these additional contributions lead to
destabilizing effects, thus even for positive hardening moduli the tendency towards the
formation of localization bands can be predicted. Moreover, the orientation of the local­
ization band and the active slip planes do not agree, but obey a slight mismatch angle.
These two results coincide qualitatively with documented experimental observations.

In summary. this work investigated different aspects of the modelling. the com­
putational treatment and the localization analysis of non-Schmid single crystal plasticity
and highlighted the results for cases of simple model problems.
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